
~~~qL W fl IIL U k

REPORT DOCUMENTATION PAGEAD -A 198 398 I-RSRCIEMRIG

- 3 OSTRIB3UTION/AVAILABILITY OF REPORT

--- 'pproved for public release; distribution
2b DECLAssIF:ICATION/OOWNGRAOING SCHEDULE unlimited
N/A

A PERFORMING ORGANIZATION REPORT NUMSER(S) S MONITORING OFIGANIZA'ION REPORT NUMBERIS,

6 . %AME OF PER ORMING ORGANIZATION 
o. OFFICE SYMBOL 7 s. NAME O MONITORING ORGANIZATIONI IF

Sc. ADDRESS ICdty StitLa ZIP Caoe 7b. ADDRESS (City. State and ZIP Codei Rl

iaff/ebed70 Building 410
Boiling AFB DC 20332-6448

&a. NAMIE OF FUNDINGISPONSORING go. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (Itlapptacablel

1k. ADDRESS ICItY. State and ZIP Code) 10 SOURCE OF FUNDING NOS.

11. TITLE (Inclusde ?Curlt~ C~aty Zton61102F 2304

1 _8.SONAL AUTHOR(S)

13&. TYPE OF REPORT 13b. TIME COVERED I.DATE OF REPORT Y .. Mo., Day) 15. PAGE COUNTzROM J O /w

14. SUPIPLEMENTARY NOTATION

ICOSATI CODES IS. SUBJECT TERMS 'Con ttnue on rove's. if necesaary and cdentify by block number)

FIELD GROUP SUB. GR

19. ABSTRACT (Conltinu~e OF, npv*tUE fnece SeUy and identify by block ,,u'bfrl

The topic of this research involves two categories of investigation. One centers
on the methods used for evaluation in the various scientific disciplines. The P1 is
studying these methods, but the research is not yet to the point that a unifying paper
directed to the software engineering problem can be produced. The second area of
investigation is that of the software process and what can be evaluated with respect
to it. In this domain, work progresses through small experiments and conceptual
studies.

Considerable accomplishments have been reported for the first year of research.
There is every reason to believe that this progress will continue in the remaining two

years of study and that some unified theory for process evaluation will evolve.

20. OISTRISUTION/AVAtLABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITIEO SAME AS PT rX OTIC USERS 0 UNCLASIFIED

22.I. NAMIE OF RESPONSIBLE INDIVIDUAL 22b, TELEPHONE NUMBER j22,L..ICE SYMBot.

Ilncltude A.,. Codeo

rI _______202/767_502,PN

DO FORM 1473, 83 APR lWITION OF 1 JAN 73 IS OBSOLETE.

88 8 2 4~ SECURI1TY CLASS,. iC.AT ION or. THIS PAGE



AFOAR-'I . 08-U 791

Evaluation Methodology for Software Engineering

A Report on the First Year of Research Under
Grant No. AFOSR-87-0219

Bruce I. Blum

RMI-88-007
May, 1988

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justification

By
Distribution/
Availability Codes

iAvniP- and/or

I Speocial

This work was supported by the Air Force Office of Scientific Research (AFOSR)
under grant AFOSR-87-0219.

888 25 1.



Evaluation Methodology for Software Engineering

A Report on the First Year of Research Under
Grant No. AFOSR-87-0219

Bruce I. Blum

Johns Hopkins University/Applied Physics Laboratory

INTRODUCTInN

This report describes the progress of the first year of research in a proposed
three year program designed to establish the most effective methods for software
engineering evaluation. The central concern is the impact of changes in the software
process. In particular, there is a special interest in benefit improvement as
demonstrated by evaluations across process models.

The research has pursued two types of activity. On the one hand, evaluation
methods used in other disciplines have been reviewed for their utility in software
engineering. The goal is to produce a taxonomy of methods with a suggested range
of strengths for software engineers. The availability of this unified view would help
analysts select the most appropriate evaluation techniques for a given class of task.

The second class of activity relates to small studies in which the evaluation
methods can be tested and/or quantifiable concepts can be modeled. Because the
research goal is to provide a means to appraise alternati,.e dcvc!opment paradigms,
some effort must be spent on the study of an essential software process model, i.e., a
meta-process model.

This report is divided into two sections. The first describes the problem as it is
interpreted in the context of this research grant. The second section presents the
accomplishments of the first year of work.

THE TECHNICAL APPROACH

Computer science and the application of computers are undergoing revolutionary
changes. Traditional development paradigms have new tools to support the softwAve
process. Examples include Ada and other languages that apply the principles of
abstraction and concurrency management, environments and work stations that
integrate graphics and text, and general purpose facilities that allow casual users to
satisfy their needs directly. New paradigms also are being produced to offer
improvements in quality, cost, and scope. Examples here are the use of artificial
intelligence and knowledge-based assistants, the direct execution of specifications with
the operational approach, and the application of new techniques such as object
oriented programming and conceptual modeling. Finally, there are major changcs in
the hardware environment. For example, lowered costs eliminate many of the memory
and processing speed barriers, new parallel architecturcs remove the earlier processing
bottlenecks, and communications and networking blur the boundaries between



individual computers and databases.

Yet with all this improvement, we lack a clear understanding of how to evaluate
our progress. In some areas, such as equipment cost per unit of memory or
processing time per unit of operation, the change is easily quantified. However, when
one sets as a goal the improvement of "the power, quality, reliability, and
transportability of computer software and the verification of software, data, structure,
and operating systems,"' how does one quantify the improvement? Moreover, if one
asserts that the improvements result from the use of processes, methods, tools or
environments, then how does one identify and evaluate the contributing factors?

This research addresses these issues. Methodology is the study of methods, and
the focus of this investigation is the study of evaluation methods -- used in software
engineering and in other scientific disciplines -- as they relate to software
development, use and maintenance. The goal of this research is (a) to identify
demonstrated techniques that can be applied in software engineering, (b) to establish
taxonomies of (1) attributes that can be evaluated and (2) the associated evaluation
methods, and (c) to document -- by means of references and pilot studies -- which
metrics offer valid measures of improvement and which qualities can be evaluated only
subjectively. Naturally, to provide a context for the evaluation, the research also
involves a definition of the essential characteristics of the processes to be measured.

Problems In Software Engineering Evaluation

There are two classes of evaluation in software engineering. The first, which we
call vertical evaluation, entails evaluation of software within a fixed context. The
most common example of this type of evaluation is the use of measures of product
size, changes and failures to evaluate cost, quality and reliability. Such evaluations
normally are performed for a fixed development community with a given process model
over an extended period of time. During the period of data collection there tend to
be changes to the process and environment, and the data analysis is used either to
measure improvements or to predict future performance. For example, cost models are
based upon empirical evaluations of previously collected data. The vertical evaluations
are most valid when they are based upon longitudinal data from a single organization.
Comparisons across organizations have broader variance, and few industry-wide
standards have been accepted.

Horizontal evaluations -- the target area of this research -- focus on the
evaluation of technology with respect to its impact on the software process. That
technology generally is presented in the form of a tangled hierarchy as follows:2

Process Descriptions

Methods and Practices

Tools

Support Environment

Thus, for a fixed process model and set of practices, there are tools that can support
that model. There also are alternative approaches for combining these tools to

2



produce support environments for software development and maintenance. The goal of
horizontal evaluation, therefore, is to measure the impact of changes at any of the
four levels of this software engineering hierarchy.

Horizontal evaluation is difficult. First, computer science is unlike other
sciences; its scientific base rests in the formalisms that it uses. These formalisms
have logical properties that can be evaluated independent of any application. Indeed,
Turski notes,3

The history of advances in programming -- the little that there is of it--
is the history of the successful formalization: by inventing and studying
formalism, by extracting rigorous procedures, we progressed from
programming in machine code to programming in high level languages
(HLLs).... For many application domains HLLs provide an acceptable
linguistic level for program (and system) specification.... The expert views
of such domains, their descriptive theories, can be easily expressed on the
linguistic level of HLL, thus becoming prescriptive theories (specifications)
for computer software.

In software engineering the primary object of interest is the software product, not its
programming. Research is concerned with tools to support the development of
descriptive theories in the problem domain, the transformations and practices
necessary to formalize a HLL prescriptive theory that can be implemented as a
software product, and the management and support of this process.

The kinds of evaluation appropriate for this research cannot follow the models of
evaluation used in physics and engineering. There are no fixed phenomena; one
cannot test a theory empirically because the data are affected by too many
uncontrolled variables. This complexity also makes it difficult to separate the
attributes to be evaluated from the background effects. The cost of collecting data is
high, and there are difficulties in establishing controls in "real" (as opposed to "toy")
projects. In fact, controlled studies with sample sizes large enough to evaluate a
hypothesis are possible only for the most constrained issues.

In addition to the problem of not having well defined properties to be evaluated,
there are -- as we noted in the discussion of vertical evaluation -- few broadly
accepted baselines or "gold standards" against which one can measure change.
Software engineering is dynamic, and it is not clear how data collected over a span of
two decades can be used. For example, a frequently cited fact is that there can be a
1:28 variation in programmer performance. However, this is based upon one element
in a 12 programmer study conducted in the late 1960s. 4 Is this valid in today's age
of personal computers and computer literacy? Or was the difference an artifact of
training that would correct itself as more effective methods were learned? Recall
that the standard QWERTY keyboard format initially was chosen because it would slow
performance and thus prevent the jamming of keys; this justification for its selection
no longer is valid. In this spirit, some older assumptions about the software process
should be reexamined.

Finally, there arc inhcint problems in the evaluat;on of software engine-ring
technology. First, much of the research and development with respect to technology
is either academic or proprietary. Evaluation in an operational environment may not
be possible. Second, the academic research is complex and typically requires years to

3



complete. Thus, much that is reported must be descriptive, conceptual and/or
subjective. Moreover, much of the software engineering technology that is
investigated in a research setting has no parallel in a production setting. (For
example, with the current levels of experience, it is not practical to evaluate the
methods used to implement an expert system.) There also are unavoidable biases in
evaluating a technology. Mahoney has studied the problem of self-deception in
science and argues that "the psychological processes powerfully influence and, in many
ways, constrain the quality of everyday scientific enquiry."5  By way of conclus;n
we note that all of these problems are further exacerbated when one performs this
inquiry in a dynamic discipline, with a limited heritage of formal evaluation, and
where there is a strong personal bonding with the objects of study.

A Framework for Evaluation

In establishing a framework for horizontal evaluation, there are two basic
approaches. One can start by identifying the objects to be evaluated, or one could
begin with methodological issues. We start with the first.

In a software engineering context, there are three objects that can be evaluated:

Problem. This is the application or need for which a software product is
being developed.

Process. This is the sequence of activities associated with the software
product's development and maintenance.

Product. This is the software item that is delivered and used.

There have been few attempts to fix a problem and investigate alternative approaches
with respect to its implementation. Boehm's COCOMO system has been used as a
control for some student exercises 6 ,7 and as a baseline for other studies.8 Cugini has
built a database of programs for a fixed, non-trivial problem, but the data have not
been studied in any depth.9 In each of these cases, a fixed problem was used to
evaluate some properties of the process or the product. Halstead, on the other hand,
introduced Software Science as a theory for repeatable and universal measures at the
problem level. 10 The problems, in this case, were limited to algorithms, and much of
the initial theory is no longer accepted as valid. Albrecht sought an alternative
approach to quantifying the size of a problem; he introduced the concept of function
points as a measure for information processing problems.1 1  (Interestingly, the
extensions to function point analysis focus on estimating the size of, and therefore
the effort to produce, the end product.)

With respect to the process, there have been many evaluations of the impact of
change within the context of a fixed process model. Most of this evaluation is what
we already have termed vertical, i.e., it compares effects within a general problem
domain and often within a single organization. The analysis of cost and schedule data
are examples of this type of evaluation; such data would be useless for comparisons
with process models that use tools or paradigms that distort the allocation of effort
among the process steps. For example, how does one use historical costing data from
traditional production cycles to estimate costs when using a Fourth Generation
Language?

4



Finally, there is the software product. Most evaluations focus on attributes of
the product.12  Some obvious measures are lines of code and numbers of errors
encountered. Code often is considered the first formal object that can be analyzed,
and there are many easily computed metrics that are used to predict product quality.
(McCabe's complexity metric13 is one commonly applied example.) Nevertheless,
virtually all evaluations of a final product hold the process model and environment
fixed. Few studies are designed to address the impact of a major technological
change, and many of those that do are naive in their study designs. For example, to
what extent did the improvement associated '"ith structured programming result from
the introduction of discipline, the reduction in size of the conceptual objects being
processed, or the Hawthorne effect? Although the question may seem facetious, if
the structured approach was accepted because of its side effects, then its rigid
retention may become a software parallel to the QWERTY keyboard.

Given this stratification of the problem domain, what evaluation methods can be
applied? It is useful to start with a medical model. 14 At the lowest level, there is
the basic research in biological phenomena. This involves in vivo and in vitro studies
and the use of mathematical and animal models. The goal is to isolate some portion
of a biomedical problem so that it can be understood better. Examples in the
computer science domain include evaluation of algorithms and transformations,
determination of user reaction responses to different interfaces, and the measurement
of some properties of code or documentation. In each of these cases, the objective is
to establish some invariants within a given context that add to our understanding of
some larger problem.

At the next level are case studies and clinical trials. In medicine, more time is
spent in training a specialist in a clinical setting than in a classroom. The amount of
formal knowledge available is beyond the comprehension of a single individual;
therefore, much of the physician's training is organized around the clinical situations
that he is expected to encounter. The result is a set of learning experiences derived
from case studies, i.e., specific instances. Experience has shown, however, that we
are poor judges of outcome when we generalize from anecdotal records. Thus,
medical research confirms its perceptions by the use of clinical trials. Here a cohort
(a group of like patients) is selected, a set of procedures or therapies is defined that
involves a limited number of variables, and the outcome is used to evaluate some null
hypothesis. Most computer science examples of this type of evaluation are rooted in
the behavioral sciences. The studies in individual differences among programmers are
one example;15 the recent workshops on the empirical study of programmers provide
another illustration. 16

The next higher level in the medical analogy is that of the health care delivery
system. Epidemiology, for example, studies the health of the population and uses
domain-specific knowledge to identify the causes of ill health, areas of potential risk,
or the effects of change. The evaluation of a health care system, i.e., a system
designed to alter the health status of a population, provides additional insights. In
this case, the system considers benefits and costs separately. Costs are evaluated as
dollar values. The benefits are organized into the following three categories:

Structure. This is the capacity of the facilities, qualification of the
personnel, etc. An example in the software engineering context would be
the use of methods and tools that achieve the goal of "requirements

5



analysis, design, test and maintenance of application software by technicians
in an economics-driven context."17

Process. This is the volume, cost, and appropriateness of activities in the
achievement of the system goals. A software example here would be the
impact of walkthroughs as measured by the rates of defect detection in
different stages of the development process.

Outcome. This is the change in status attributable to a system. Health-
related examples would be mortality and morbidity rates. For software
products, the measurable outcomes might be post-delivery error counts,
evaluations of relative product performance or user satisfaction, and the
ability to meet schedule or budget goals. Note that outcome measures
always are relative to some baseline.

This statement of the research problem concludes with the following observation.
Horizontal evaluation in software engineering just is emerging as a serious issue.
There are many models to draw from in establishing evaluation methods, and the
scientific quality of future research in software engineering will depend -- in part--
on how well we apply this knowledge. In the following section, the results of the
first year's investigation are summarized.

YEAR 1 ACCOMPLISHMENTS

In the proposal for the first year of support, the research was divided into two
categories of activity: conceptual and experimental. The goal of the conceptual tasks
was to read, organize and document to gain an understanding of evaluation
methodology as it relates to software engineering. The experimental tasks, on the
other hand, involved trials in the software engineering domain that would provide
insight into the methodological concepts.

One of the stated objectives was to produce a taxonomy of the objects, tools,
methods, and environments to be evaluated plus a taxonomy of the scientific
evaluation methods as they relate to software engineering. Considerable reading was
done on the subject, and it became clear that additional reading would be required
before such taxonomies could be presented for review. Thus, while the creation of
the two taxonomies remains a research goal, the investigator does not feel that his
current thoughts are mature enough to report on at this time.

The year one proposal identified a set of experimental tasks, each of which
would require a man-month of effort to perform and evaluate. Six projects were
identified, and it was stated that all would be initiated and three completed during
year one. In late 1987 the author became the Principal Investigator of a research
contract with the Office of Naval Research (ONR) to study knowledge representation
in software engineering. This contract complemented the study under this AFOSR
grant, and it was possible to enlarge several of the experiments and thereby consider
both the evaluation methodology and knowledge representation issues.

The results of some of the research conducted under this grant have been
documented in the form of reviewed papers, invited presentations, and internal
reports. In addition, because the work was organized as a three year effort, there

6



are many projects in progress. In what follows, the published results are identified.
The narrative presents each document in the context of the research activity, i.e., a
search for problem clarification and potential solution. The detailing of the solution
is contained in the referenced document; this report does not repeat the many
findings already reported elsewhere.

The material is grouped into three categories: those activities that were
supported exclusively by the AFOSR grant, those that were integrated with the
research conducted for ONR, and those that were not directly supported by this grant.
(The latter are included because they did have an impact on the Pl's perceptions and
thereby impacted his work in this grant.)

Activities Supported by AFOSR Grant Only

One of the topics of immediate interest involved the representation of the
problem to be solved. That is, if a problem could be solved, and if it had a
representation that implied the solution, then finding the qualities of that
representation would provide the basis for the evaluation of alternative solutions
and/or solution methods. Two short notes were prepared on different aspects of this
problem. Each was presented at a meeting or workshop.

Expeiicnce with an Atypical Development Environment Based Upon Reuse,
Minnowbrook Workshop on Software Reuse, (Unpublished Workshop
Notebook, 1987). To be reprinted in Will Tracz (ed.), Software Reuse: The
State of the Practice, IEEE Computer Society Press. This short note
introduced the concept of reuse as a formalization of prior experience. It
then reviewed the forms that reusable objects might take. To provide a
more concrete foundation for the discussion, the TEDIUM environment was
used as a model to illustrate that such concepts are within the current
state of the art.

Experience with a Global Documentation Environment, Second International
Conference on Human-Computer Interaction, 1987. This full page abstract
addressed the idea of representation as knowledge about the application and
then considered the issue of capturing that information in a global
document environment. TEDIUM again was used to demonstrate that the
concepts were sound. Evaluation of the environment in the cotltext of
human-computer interaction was the central concern of the presentation.

The author was invited to participate in a panel on software metrics at the IEEE
Computer Standards Conference (COMPSTAN 88). The focus of this presentation was
on the need to understand the process of evaluation and the danger of standardizing
process metrics when the processes were subject to change. The talk was summarized
in an abstract and an internal APL report. A draft paper that expands on this idea is
being developed for the ACM SIGSOFT Software Engi?.eering Notes.

On the Use of Metrics to Compare Models, Methods and Tools, (abstract),
Proceedings, COMPSTAN 88, IEEE Computer Society Press, 1988, p 107.
Included in APL Research Center Report, RMI-88-006. This short note
points out that evaluation is with respect to some baseline or other group,
and that there are few well understood universals in software engineering

7



upon which to base an evaluation. Examples taken from recent issues of
Science are used as illustrations.

Two refereed papers were produced. The first was prepared in response to an
invitation by the editor of a special issue of Large Scale Systems. Of concern here
was the use of new software development paradigms and their evaluation. The second
was prepared for the 27th Annual Technical Symposium sponsored by the Washington,
D.C. Chapter of the ACM. The topic for this symposium is Productivity: Progress,
Perspectives, and Payoff. A paper was submitted and accepted that raised basic
questions about what constituted productivity and how could it be measured.

Evaluating Alternative Paradigms: A Case Study, Large Scale Systems, (to be
published in 1988). This is a full discussion of the software process and its
evaluation. The major problems in development are identified along with
generic solutions. Experience with TEDIUM is used to illustrate that the
concepts are practical, and the paper concludes with a discussion of the
risks associated with these new paradigms.

A Program a Day: Software Productivity's Four Minute Mile, Proceedings.
27th Annual Technical Symposium, (in press). This paper addresses the
issue of productivity in the context of the differences between the problem
and the product. The presentation draws upon Brooks' "No Magic Builet"
paper. It suggests alternative ways for looking at the problem that offer
the potential for orders of magnitude improvements. Naturally, the question
of how to evaluate the productivity growth also is considered.

Activities Supported by Both the AFOSR Grant and the ONR Contract

In late 1987 the author became a PI on an ONR contract to study knowledge
representation issues in software engineering. Because there is a clear connection
between the evaluation and software process concerns of this grant, the research
effort was combined wherever a symbiotic benefit could be anticipated. Despite this
occasional integration of research, some AFOSR tasks continue to be studied
independently.

Three major papers were prepared as a joint research activity. The first was
submitted to and accepted by the Journal of Systems and Software, the second was
submitted to and accepted by the Conference on Software Maintenance, 1988, and the
third was submitted to and accepted by the IFIP WG 8.1 Conference on Computerized
Assistance During the Information Systems Life Cycle (CRIS 88). The last of these is
being published in an extended form as an internal report. Finally, a short -- but
conceptually important -- position statement was prepared for CASE '88.

Volume, Distance and Productivity, Journal of Systems and Software, (to be
published in mid-1989). This paper introduces some concepts that provide
insight into the software process and its productivity. The concepts, at
this stage, are qualitative. Nevertheless, they get at the fundamental issues
of representation and the evaluation of alternative paradigms (as they are
realized in their representations). This has been a key paper in the
structuring of my understanding of the development-productivity problem.

8



Documentation for Maintenance: A Hypertext Design, Conference on
Software Maintenance, '88 (in press). Much of the discussion of hypertext
deals with the technology; the presentation of an example is included to
illustrate applicability. This paper considers the set of written text
produced during the software process, i.e., the documentation, and proposes
a model that can be managed using hypertext technology. The question of
validating the model also is examined.

An Illustration of the Integrated Analysis, Design and Construction of an
Information System with TEDIUM, Proceedings of the IFIP WG 8.1
Conference on Computerized Assistance During the Information Life Cycle
(CRIS 88), (in press). This conference solicited papers that used one of
two sample problems to illustrate how automation could be applied to the
information system life cycle. The author chose the more complex of the
examples and implemented it. He then evaluated both the process and thc
product. Detailed notes were kept during the development activity, and
insights were developed regarding the cognitive tasks during implementation,
how they can be measured, and what kinds of tools could improve the
process.

Closure and CASE Environments, (Position paper prepared for CASE '88).
This brief paper helped to formalize the concept of closure in a software
environment. If one considers the software process as a sequence of
transformations, then clearly there is closure. However, when one projects
the transformations onto the formal (i.e., automated) domain, the process is
no longer closed; there are transformations from conceptual to formal
representations. Human judgement is an essential factor in software
development, and the concept of closure must be extended to the interface
between these conceptual and formal representations. This paper explores
some of these issues and suggests categories for measurement.

Activities Not Supported by the AFOSR Grant

In addition to the above activities, the author was involved in a variety of tasks
that -- in various ways -- positively affected his work on th;s grant. None of these
activities was directly supported by the AFOSR grant; however, attendance at some
meetings may have been partially charged to the grant when it was felt that the topic
was appropriate.

Two items of the work performed under the ONR contract were not involved
with the central focus of the AFOSR grant, and the results of this effort have been
published independently.

Human Information Processing in Software Development, Concise
Encyclopedia of Information Processing in Systems and Organizations,
Pergamon Press, (in press).

R.F. Wachter, A. Meyrowitz and , Expert Systems, Artificial
Intelligence and Software Engineering, Encyclopedia of Computer Science
and Technology, Marcel Dekker, Inc, (in press).

9



For some time the author has been involved with the field of medical
informatics, and there have been some invitations to document his knowledge of that
discipline. The following was accomplished during this period.

The ACM Conference on the History of Medical Informatics, (November,
1987). The author was the Conference Chair and is editing (w it h K.
Duncan) a book on the conference. It will be published by the ACM Press
and Add!son Wesley.

The author is preparing several chapters for A Clinical Information System
for Oncology, edited by J. Enterline, R. Lenhard and _ _ , Springer-
Verlag. Much of this work involves issues in the evaluation of a medical
system.

Medical Informatics, Encyclopedia of Computer Science and Technology,
Marcel Dekke,, (in press).

Computer Technology in the Health Sector in the Nineties, (invited
presentation), Symposium Informatica Hospitaria, Barcelona, Spain, April,
1988.

The author also was a member of a project team that developed an Intelligent
Navigational Assistant (INA) to serve as a natural interface to a large Army database.
Some of the work was reported on during the life of this grant. The following paper
was prepared during the grant period.

A Simple MUMPS Windowing Environment, 17th Annual MUMPS Users'
Group Meeting, June, 1988. The author also will conduct a tutorial on
Software Engineering at this conference.

Finally, we note that the author is active in the Johns Hopkins Continuing
Professional Programs. During this grant period, he taught two different courses in
software engineering and conducted a three day short course on the same topic. He
also presented the following paper about software engineering education.

V. Sigillito, and P. Loy, Software Engineering in the Johns Hopkins
University Continuing Professional Programs, Second SEI Conference on
Software Engineering Education, Springer-Verlag, (in press).

SUMMARY

The topic of this research involves two categories of investigation. One centers
on the methods used for evaluation in the various scientific disciplines. The PI is
studying these methods, but the research is not yet to the point that a unifying paper
directed to the software engineering problem can be produced. The second area of
investigation is that of the software process and what can be evaluated with respect
to it. In this domain, work progresses through small experiments and conceptual
studies.

Considerable accomplishments have been reported for the first year of research.
There is every reason to believe that this progress will continue in the remaining two

10



years of study and that some unified theory for process evaluation will evolve.

REFERENCES

1. Mathematics and Information Sciences, Research Interests of the AFOSR,
Boiling Air Force Base, Washington, D.C. 20332, November, 1985, p. 37.

2. Musa, J. (ed.), Stimulating Software Engineering Progress, A Report of the
Software Engineering Planning Group, ACM SIGSOFT SEN, (8,2):29-54, 1983.

3. Turski, W.M., The Role of Logic in Software Engineering, Proceedings. 8th
International Conference on Software Engineering, IEEE Computer Society
Press, 1985, p 400.

4. Sackman, H., et al., Exploratory Experimental Studies Comparing Online and
Offline Programming Performance, Communications of the ACM, (11,1), 1968.

5. Mahoney, MI.J., Self-Deception in Science, AAAS Annual Meeting, 1986, draft
preprint, p. 1.

6. Boehm, B.W., An Experiment in Small-Scale Application Software
Engineering, IEEE Transactions on Software Engineering, SE-7:482-493, 1981.

7. Boehm, B.W., T.E. Gray and T. Seawaldt, Prototyping vs. Specifying: A
Multi-Project Experiment, IEEE Transactions on Software Engineering, SE-
10:290-303, 1984.

8. Blum, B.I., A Paradigm for Developing Information Systems, IEEE
Transactions on Software Engineering, SE-13:432-439, 1987.

9. Cugini, J.V., Selection and Use of General Purpose Programming Languages

(2 Vols.), NBS Spec Pub 500-117, 1984.

10. Halstead, M. Elements of Software Science, Elsevier, Amsterdam, 1977.

11. Albrecht, A.J. and J.E. Gaffney, Jr., Software Function, Software Lines of
Code, and Development Effort Predictions: A Software Science Validation,
IEEE Transactions on Software Engineering, SE-8:629-648, 1983.

12. Basili, V.R., R.E. Selby and D.H. Hutchens, Experimentation in Software
Engineering, IEEE Transactions on Software Engineering, SE-12:737-743,
1986.

13. McCabe, T., A Complexity Measure, IEEE Transactions on Software
Engineering, SE-2:308-320, 1976.

14. Blum, B.I., Clinical Information Systems, Springer-Verlag, New York, NY,
1986.

15. Curtis, B., Fifteen Years of Psychology and Software Engineering: Individual
Differences and Cognitive Science, Proceedings. 7th International

11



Conference on Software Engineering, IEEE Computer Society Press, pp. 97-
106, 1984.

16. Fmpirical Studies of Programmers, Ablex Publication, Corp., Norwood, NJ,
1986, 1987.

17. Boehm, B.W., Software Engineering, IEEE Transactions on Computers, C-
25:1226-1241, 1976, p. 1239.

12


